Eur. Phys. J. A 18, 475-478 (2003)
DOI 10.1140/epja,/i2002-10263-9

THE EUROPEAN
PHYSICAL JOURNAL A

Hadrons with charmed quarks in matter

A. Sibirtsev®

Institut fiir Kernphysik, Forschungszentrum Jiilich, D-52425 Jilich, Germany

Received: 30 September 2002 /

Published online: 22 October 2003 — (© Societa Italiana di Fisica / Springer-Verlag 2003

Abstract. We investigate the DD decay width of excited charmonium states at finite nuclear density with
simultaneous modification of both D- and D-mesons in nuclear matter. The strongest effect is found for the
¥’'-meson. The medium modification can be detected by dilepton spectroscopy as substantial ¥’ broadening

and anomalous ¥’ absorption.

PACS. 13.25.Gv Decays of J/¥, T, and other quarkonia — 14.40.Lb Charmed mesons — 14.65.Dw Charmed
quarks — 24.85.+p Quarks, gluons, and QCD in nuclei and nuclear processes

1 Introduction

In dense and hot nuclear matter the light-quark conden-
sates qq might be substantially reduced. This affects the
light-quark content of mesons and baryons and therefore
results in-medium modification of hadron properties [1-
3]. Even if the changes in quark condensates are small,
the absolute difference between the in-medium and bare
masses of hadrons is expected [3,4] to be larger for heavier
hadrons.

The charmed mesons, which consist of light ¢, ¢ and
heavy ¢, ¢ quarks, are considered suitable probes of in-
medium modification of hadron properties. Similarly to
K (gs) and K (¢5) mesons, the D (gc) and D (g¢) sat-
isfy different dispersion relations in matter because of the
different sign of ¢ and g vector couplings [3]. While the
D-meson mass is reduced in nuclear matter, the D mass
is raised, as is illustrated by fig. la). Calculations with
the Quark-Meson Coupling model (QMC) [5] show that
already at normal nuclear density pg the mass splitting
between D- and D-mesons is about 160 MeV.

It was proposed [4] that the modification of the D-
meson in nuclear matter can be identified by enhanced
subthreshold production of open charm in pA annihila-
tion. Because of charm conservation, D- and D-mesons
are produced pairwise. As is shown in fig. 1b) the sum of
D and D masses depends substantially on nuclear den-
sity. The downward shift of the DD threshold at pg is
~ —100MeV. A QCD sum rule estimate [6] predicts about
the same shift.

Furthermore, an attractive D-nucleus potential can
be measured by investigating charmed mesic nuclei [3].
The reduction of D mass in matter might affect open-
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Fig. 1. a) The in-medium mass of D- and D-mesons as a
function of nuclear density p/po, with po = 0.16 fm ™ and the
DD mass splitting (upper axis). b) The solid line shows the
overall DD mass as a function of density. The dashed lines
indicate the masses of excited charmonia.

charm production [7] and J/¥ suppression [8] in relativis-
tic heavy-ion collisions.

In contrast to open charm, charmonium mesons con-
sist of heavy c¢ quarks and can be affected only by glu-
onic condensates. It was expected that the modification
of properties of heavy quarkonia in matter would be al-
most negligible [9]. In that case, the overall DD mass at
some nuclear density might cross the masses of excited
charmonium states, as is illustrated by fig. 1b).
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The crossing of the charmonium states levels and the
DD threshold in nuclear medium might result in the melt-
ing [10] of excited charmonium mesons.

Here, we investigate the modification of widths of char-
monium states at finite nuclear density with D and D
in-medium masses predicted by QMC [3]. We consider si-
multaneous modification of both D- and D-mesons, as is
illustrated in fig. 1 and study ¥ (3770), ¥’/ (3686) and x .2
decay into DD in nuclear matter. The Yo modification is
not discussed since the DD threshold does not cross its
mass even at p = 3py, as is shown in fig. 1. The x; — DD
decay is suppressed by parity conservation.

2 W(3770)

The ¥"-charmonium lies above the DD threshold in free
space and its dominant decay width into DD channel is
given by

2 3
g npp 4
FW”*?DD: WS’]?Dm_%’ (1)

where my is the ¥ (3770) mass and ¢ is the D-meson
momentum in the charmonium rest frame,

2 2 22 2.2 1/2
[(mw—mD—mD) —4mDmD]

(2

1= 2m¢
with mp and mp the masses of D- and D-mesons, respec-
tively, while the coupling constant gy, pp = 14.89 is fixed
by the vacuum decay width Iy, pp = 23.6 MeV.

If " DD coupling does not change in matter the mod-
ification of the ¥(3770) width is entirely given by D and D
in-medium masses and is determined by the phase space
dependence of the charmonium decay width. In that case
the in-medium ¥ (3770) width depends substantially on
nuclear-matter density, as is shown by the solid line in
fig. 2a).

Within the *Py model [11] the ¥ DD coupling itself
depends on the D and D masses via

73201152 172
urpp = 557—310&” [(¢>+mb) (¢ +m})]"

x (156% — 2¢°) exp (— ¢°/65°), (3)

where the oscillator length scale 8 = 360 MeV is fixed by
light-mesons decays [11], while the interaction strength
~ = 0.33 is determined by ¥ — DD decay.

Finally, the dashed line in fig. 2 shows the dependence
of the ¥ — DD decay width on nuclear-matter density
resulting from the 2Py model. At normal nuclear density
po = 0.16 fm =3 the ¥"'(3770) in-medium width almost sat-
urates Iy, pp =~ 90MeV, which is ~ 3.8 times larger
than in vacuum. Furthermore, the 3 Py result substantially
differs from the phase space estimate.

The ¥" modification in nuclear matter might be stud-
ied by dilepton spectroscopy from AA as well as pA inter-
actions, since the effect is measurable already at normal
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Fig. 2. Decay widths of ¥"(3770) (a) and ¥’'(3686) (b) char-
monium states into DD as a function of nuclear-matter density
in units of pg. The solid lines show the phase space dependence,
while the dashed lines are the results from the 3Py model. In

both calculations the D and D in-medium masses are given by
the QMC model.

nuclear densities. The ¥ (3770)-charmonium does not de-
cay into J/¥ and thus its modification in matter cannot
be considered as an additional source of J/¥ suppression
in heavy-ion collisions.

3 W/(3686)

The ¥’-charmonium lies below the DD threshold in free
space, but the DD decay channel becomes open at nuclear
density p ~ 0.05fm™3, as illustrated by fig. 1. The ¥’ is
narrow, its total width is 0.277 MeV and partial decay into
J/¥ accounts for ~ 54% of the total width.

Although, the ¥(3686) coupling to DD is not directly
accessible, it can be estimated within the framework of
Vector Meson Dominance model as

2, Moot my
v'DD 27 F@/*}e%ref ’

(4)

where « is the fine-structure constant, my is the ¥/ (3686)
mass and I'g:_,.+r.— = 2.35keV is the radiative ¥ — ete™
decay width. Finally, the ¥’ DD coupling constant is 12.84;
the ¥ DD coupling from VMD is to 19.94, which is close
to the result from direct ¥ — DD decay given by eq. (1).

The phase space dependence of the ¥’ in-medium
width from eq. (1) is shown by the solid line in fig. 2b).
This result again can be compared with the prediction of
the 3Py model given by [11]

71/29942 12
L'y pp = g B30 [(¢® +mBb)(¢* +mB)]

xq* (156 — 2¢%)° exp (- ¢2/6°) (5)

and shown by the dashed line in fig. 2b). Here the cal-
culations were done with parameters # and ~ evaluated
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Fig. 3. a) Dilepton spectra from ¥’ and ¥ decays at normal
nuclear density p = po = 0.16 fm ™3 (solid lines) and in vacuum
(dashed lines). b) Decay width of the xc2(3556)-charmonium
into DD as a function of nuclear-matter density in units of po
predicted by the Py model with D and D in-medium masses
given by QMC.

above. Note that at nuclear densities p < 1.5py both the
3 Py model and VMD phase space estimates are in reason-
able agreement. An exciting observation is that at normal
nuclear density py = 0.16 fm 3 the ¥’ width is ~ 70 MeV,
which is ~ 250 times larger than that in vacuum.

Again, the ¥’ modification in nuclear matter can be
measured through dilepton spectroscopy. As we found, the
dilepton spectrum from ¥’(3686) decay in matter might
strongly overlap with ¥”(3770)-charmonium decay. Fig-
ure 3a) shows dilepton spectra from ¥’ and ¥ decays un-
folded from the production cross-section. The solid lines
show the results for matter at normal nuclear density,
while the dashed lines indicate the spectra in free space.
The measurement of a broad peak around ¥’ pole might
be considered as an direct indication of in-medium modi-
fication of charmonia.

On the other hand, a large DD component of ¥'-
charmonium should result in strong ¥’ absorption in nu-
clear matter, similar to that found [8] for J/¥ dissociation.
Moreover, ¥/ melting in nuclear matter will additionally
suppress ¥/ — J/¥ decay and partially eliminate .J/¥
yield in heavy-ion collisions.

4 X2 (3556)

The Yeo-charmonium level crosses the DD threshold at
a nuclear density of about 0.28 fm~2. In vacuum the x.o
width is 2 MeV and partial decay into the J/¥ is ~ 13.5%.
There is no reliable way to estimate Y. DD coupling and
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to evaluate the phase space dependence of the x.o in-
medium width. ~
In the 3Py model the x.2 — DD width is given as [11]

r1/2912,2 12
I, -pp= B P [(¢* +mD) (¢* +mB)]

Xq5 exp ( - q2/652)7 (6)

where m, is the x.» mass and parameters 3 and 7 are
listed above. The in-medium x.2 width is shown in fig. 3b)
as a function of nuclear-matter density. The .o modifica-
tion becomes significant only at large densities.

5 Conclusion

Modification of the D- and D-meson masses in nuclear
matter leads to a substantial increase of the x.o, ¥’ and
¥" decay widths into the DD channel.

The calculations with the density-independent cou-
pling constants between the ¥’- and ¥”-charmonium and
the D D-pair results in strong and monotonic density de-
pendence of the ¥’ and ¥ in-medium widths due to the
increase of the final-state phase space. Within the 3P,
model these couplings are also considered as a function
of the in-medium D and D masses and as a result the
¥’- and ¥"-charmonium widths do not increase monoton-
ically with nuclear density, but saturate at pg = 0.16 fm 3.
It was found that the saturation limits are Iy, pp =~
70MeV and 'y _,pp =~ 90MeV, which can be compared
with vacuum widths of 0.277 MeV and 23.6 MeV, respec-
tively. ~

The xco-charmonium level crosses the DD threshold
at p ~ 1.25p¢ and its width increases with nuclear-matter
density. At p ~ 3pg the x.2 decay width into DD is about
11 MeV, which may be compared with total I'y_, = 2MeV
width in vacuum.

We conclude that the modification of the D and D
in matter most dramatically affects the ¥’-charmonium.
This can be detected by dilepton spectroscopy as the ap-
pearance of a broad peak near the ¥’ pole or as anomalous
¥’ suppression in nuclear matter.

Our results are in agreement with the most recent find-
ings [12] that both the mass and width of ¥/ (3770) depend
significantly on the D-meson mass.
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