THE EUROPEAN PHYSICAL JOURNAL A

Hadrons with charmed quarks in matter

A. Sibirtsev^a

Institut für Kernphysik, Forschungszentrum Jülich, D-52425 Jülich, Germany

Received: 30 September 2002 / Published online: 22 October 2003 – © Società Italiana di Fisica / Springer-Verlag 2003

Abstract. We investigate the $D\bar{D}$ decay width of excited charmonium states at finite nuclear density with simultaneous modification of both D- and \bar{D} -mesons in nuclear matter. The strongest effect is found for the Ψ' -meson. The medium modification can be detected by dilepton spectroscopy as substantial Ψ' broadening and anomalous Ψ' absorption.

PACS. 13.25.Gv Decays of J/Ψ , Υ , and other quarkonia – 14.40.Lb Charmed mesons – 14.65.Dw Charmed quarks – 24.85.+p Quarks, gluons, and QCD in nuclei and nuclear processes

1 Introduction

In dense and hot nuclear matter the light-quark condensates $q\bar{q}$ might be substantially reduced. This affects the light-quark content of mesons and baryons and therefore results in-medium modification of hadron properties [1– 3]. Even if the changes in quark condensates are small, the absolute difference between the in-medium and bare masses of hadrons is expected [3,4] to be larger for heavier hadrons.

The charmed mesons, which consist of light q, \bar{q} and heavy c, \bar{c} quarks, are considered suitable probes of inmedium modification of hadron properties. Similarly to \bar{K} ($\bar{q}s$) and K ($q\bar{s}$) mesons, the D ($\bar{q}c$) and \bar{D} ($q\bar{c}$) satisfy different dispersion relations in matter because of the different sign of q and \bar{q} vector couplings [3]. While the D-meson mass is reduced in nuclear matter, the \bar{D} mass is raised, as is illustrated by fig. 1a). Calculations with the Quark-Meson Coupling model (QMC) [5] show that already at normal nuclear density ρ_0 the mass splitting between D- and \bar{D} -mesons is about 160 MeV.

It was proposed [4] that the modification of the *D*meson in nuclear matter can be identified by enhanced subtreshold production of open charm in $\bar{p}A$ annihilation. Because of charm conservation, *D*- and \bar{D} -mesons are produced pairwise. As is shown in fig. 1b) the sum of *D* and \bar{D} masses depends substantially on nuclear density. The downward shift of the $D\bar{D}$ threshold at ρ_0 is $\simeq -100$ MeV. A QCD sum rule estimate [6] predicts about the same shift.

Furthermore, an attractive D-nucleus potential can be measured by investigating charmed mesic nuclei [3]. The reduction of D mass in matter might affect open-

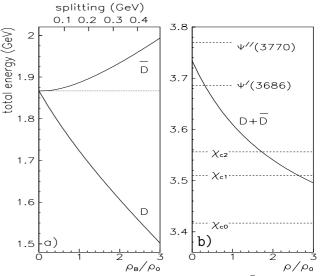


Fig. 1. a) The in-medium mass of D- and \bar{D} -mesons as a function of nuclear density ρ/ρ_0 , with $\rho_0 = 0.16 \,\mathrm{fm}^{-3}$ and the $D\bar{D}$ mass splitting (upper axis). b) The solid line shows the overall $D\bar{D}$ mass as a function of density. The dashed lines indicate the masses of excited charmonia.

charm production [7] and J/Ψ suppression [8] in relativistic heavy-ion collisions.

In contrast to open charm, charmonium mesons consist of heavy $c\bar{c}$ quarks and can be affected only by gluonic condensates. It was expected that the modification of properties of heavy quarkonia in matter would be almost negligible [9]. In that case, the overall $D\bar{D}$ mass at some nuclear density might cross the masses of excited charmonium states, as is illustrated by fig. 1b).

^a e-mail: a.sibirtsev@fz-juelich.de

The crossing of the charmonium states levels and the $D\bar{D}$ threshold in nuclear medium might result in the melting [10] of excited charmonium mesons.

Here, we investigate the modification of widths of charmonium states at finite nuclear density with D and \bar{D} in-medium masses predicted by QMC [3]. We consider simultaneous modification of both D- and \bar{D} -mesons, as is illustrated in fig. 1 and study $\Psi''(3770)$, $\Psi'(3686)$ and χ_{c2} decay into $D\bar{D}$ in nuclear matter. The χ_{c0} modification is not discussed since the $D\bar{D}$ threshold does not cross its mass even at $\rho = 3\rho_0$, as is shown in fig. 1. The $\chi_{c1} \to D\bar{D}$ decay is suppressed by parity conservation.

2 Ψ"(3770)

The Ψ'' -charmonium lies above the $D\bar{D}$ threshold in free space and its dominant decay width into $D\bar{D}$ channel is given by

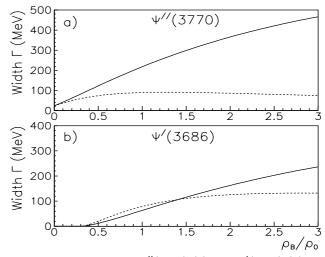
$$\Gamma_{\Psi''\to D\bar{D}} = \frac{g_{\Psi''D\bar{D}}^2}{3\pi} \frac{q^3}{m_{\Psi}^2},$$
 (1)

where m_{Ψ} is the $\Psi''(3770)$ mass and q is the *D*-meson momentum in the charmonium rest frame,

$$q = \frac{\left[\left(m_{\psi}^2 - m_D^2 - m_{\bar{D}}^2 \right)^2 - 4m_D^2 m_{\bar{D}}^2 \right]^{1/2}}{2m_{\Psi}} , \qquad (2)$$

with m_D and $m_{\bar{D}}$ the masses of D- and \bar{D} -mesons, respectively, while the coupling constant $g_{\Psi''D\bar{D}} = 14.89$ is fixed by the vacuum decay width $\Gamma_{\Psi''\to D\bar{D}} = 23.6$ MeV.

If $\Psi''D\bar{D}$ coupling does not change in matter the modification of the $\Psi(3770)$ width is entirely given by D and \bar{D} in-medium masses and is determined by the phase space dependence of the charmonium decay width. In that case the in-medium $\Psi(3770)$ width depends substantially on nuclear-matter density, as is shown by the solid line in fig. 2a).


Within the ${}^{3}P_{0}$ model [11] the $\Psi''D\bar{D}$ coupling itself depends on the D and \bar{D} masses via

$$g_{\Psi''D\bar{D}}^{2} = \frac{\pi^{3/2} 2^{11} \gamma^{2} m_{\Psi}}{5\beta^{7} 3^{10}} \left[\left(q^{2} + m_{D}^{2} \right) \left(q^{2} + m_{\bar{D}}^{2} \right) \right]^{1/2} \\ \times \left(15\beta^{2} - 2q^{2} \right)^{2} \exp\left(- q^{2}/6\beta^{2} \right), \tag{3}$$

where the oscillator length scale $\beta = 360 \text{ MeV}$ is fixed by light-mesons decays [11], while the interaction strength $\gamma = 0.33$ is determined by $\Psi'' \rightarrow D\bar{D}$ decay.

Finally, the dashed line in fig. 2 shows the dependence of the $\Psi'' \to D\bar{D}$ decay width on nuclear-matter density resulting from the ${}^{3}P_{0}$ model. At normal nuclear density $\rho_{0} = 0.16 \text{ fm}^{-3}$ the $\Psi''(3770)$ in-medium width almost saturates $\Gamma_{\Psi''\to D\bar{D}} \simeq 90 \text{ MeV}$, which is $\simeq 3.8$ times larger than in vacuum. Furthermore, the ${}^{3}P_{0}$ result substantially differs from the phase space estimate.

The Ψ'' modification in nuclear matter might be studied by dilepton spectroscopy from AA as well as $\bar{p}A$ interactions, since the effect is measurable already at normal

Fig. 2. Decay widths of $\Psi''(3770)$ (a) and $\Psi'(3686)$ (b) charmonium states into $D\bar{D}$ as a function of nuclear-matter density in units of ρ_0 . The solid lines show the phase space dependence, while the dashed lines are the results from the ${}^{3}P_{0}$ model. In both calculations the D and \bar{D} in-medium masses are given by the QMC model.

nuclear densities. The $\Psi''(3770)$ -charmonium does not decay into J/Ψ and thus its modification in matter cannot be considered as an additional source of J/Ψ suppression in heavy-ion collisions.

3 Ψ'(3686)

The Ψ' -charmonium lies below the $D\bar{D}$ threshold in free space, but the $D\bar{D}$ decay channel becomes open at nuclear density $\rho \simeq 0.05 \,\mathrm{fm}^{-3}$, as illustrated by fig. 1. The Ψ' is narrow, its total width is 0.277 MeV and partial decay into J/Ψ accounts for $\simeq 54\%$ of the total width.

Although, the $\Psi(3686)$ coupling to DD is not directly accessible, it can be estimated within the framework of Vector Meson Dominance model as

$$g_{\Psi' D\bar{D}}^2 = \frac{16\pi\alpha^2}{27} \frac{m_{\Psi}}{\Gamma_{\Psi' \to e^+ e^-}},$$
 (4)

where α is the fine-structure constant, m_{Ψ} is the $\Psi'(3686)$ mass and $\Gamma_{\Psi' \to e^+e^-} = 2.35$ keV is the radiative $\Psi' \to e^+e^$ decay width. Finally, the $\Psi'D\bar{D}$ coupling constant is 12.84; the $\Psi''D\bar{D}$ coupling from VMD is to 19.94, which is close to the result from direct $\Psi'' \to D\bar{D}$ decay given by eq. (1).

The phase space dependence of the Ψ' in-medium width from eq. (1) is shown by the solid line in fig. 2b). This result again can be compared with the prediction of the ${}^{3}P_{0}$ model given by [11]

$$\Gamma_{\Psi' \to D\bar{D}} = \frac{\pi^{1/2} 2^9 \gamma^2}{m_{\Psi} \beta^7 3^{11}} \left[\left(q^2 + m_D^2 \right) \left(q^2 + m_{\bar{D}}^2 \right) \right]^{1/2} \\ \times q^3 \left(15\beta^2 - 2q^2 \right)^2 \exp\left(-q^2/6\beta^2 \right)$$
(5)

and shown by the dashed line in fig. 2b). Here the calculations were done with parameters β and γ evaluated

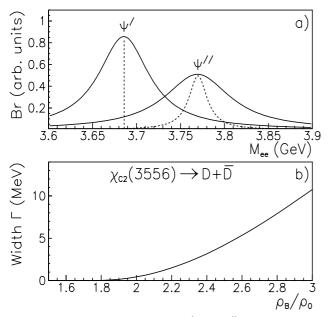


Fig. 3. a) Dilepton spectra from Ψ' and Ψ'' decays at normal nuclear density $\rho = \rho_0 = 0.16 \text{ fm}^{-3}$ (solid lines) and in vacuum (dashed lines). b) Decay width of the $\chi_{c2}(3556)$ -charmonium into $D\bar{D}$ as a function of nuclear-matter density in units of ρ_0 predicted by the ${}^{3}P_0$ model with D and \bar{D} in-medium masses given by QMC.

above. Note that at nuclear densities $\rho \leq 1.5\rho_0$ both the 3P_0 model and VMD phase space estimates are in reasonable agreement. An exciting observation is that at normal nuclear density $\rho_0 = 0.16 \,\mathrm{fm}^{-3}$ the Ψ' width is $\simeq 70 \,\mathrm{MeV}$, which is $\simeq 250$ times larger than that in vacuum.

Again, the Ψ' modification in nuclear matter can be measured through dilepton spectroscopy. As we found, the dilepton spectrum from $\Psi'(3686)$ decay in matter might strongly overlap with $\Psi''(3770)$ -charmonium decay. Figure 3a) shows dilepton spectra from Ψ' and Ψ'' decays unfolded from the production cross-section. The solid lines show the results for matter at normal nuclear density, while the dashed lines indicate the spectra in free space. The measurement of a broad peak around Ψ' pole might be considered as an direct indication of in-medium modification of charmonia.

On the other hand, a large $D\overline{D}$ component of Ψ' charmonium should result in strong Ψ' absorption in nuclear matter, similar to that found [8] for J/Ψ dissociation. Moreover, Ψ' melting in nuclear matter will additionally suppress $\Psi' \to J/\Psi$ decay and partially eliminate J/Ψ yield in heavy-ion collisions.

4 $\chi_{c2}(3556)$

The χ_{c2} -charmonium level crosses the $D\bar{D}$ threshold at a nuclear density of about $0.28 \,\mathrm{fm^{-3}}$. In vacuum the χ_{c2} width is 2 MeV and partial decay into the J/Ψ is $\simeq 13.5\%$. There is no reliable way to estimate $\chi_{c2}D\bar{D}$ coupling and to evaluate the phase space dependence of the χ_{c2} in-medium width.

In the ${}^{3}P_{0}$ model the $\chi_{c2} \rightarrow D\bar{D}$ width is given as [11]

$$\Gamma_{\chi_{c2}\to D\bar{D}} = \frac{\pi^{1/2} 2^{12} \gamma^2}{5m_{\chi} \beta^5 3^8} \left[\left(q^2 + m_D^2 \right) \left(q^2 + m_{\bar{D}}^2 \right) \right]^{1/2} \\ \times q^5 \exp\left(- q^2 / 6\beta^2 \right), \tag{6}$$

where m_{χ} is the χ_{c2} mass and parameters β and γ are listed above. The in-medium χ_{c2} width is shown in fig. 3b) as a function of nuclear-matter density. The χ_{c2} modification becomes significant only at large densities.

5 Conclusion

Modification of the D- and \overline{D} -meson masses in nuclear matter leads to a substantial increase of the χ_{c2} , Ψ' and Ψ'' decay widths into the $D\overline{D}$ channel.

The calculations with the density-independent coupling constants between the Ψ' - and Ψ'' -charmonium and the $D\bar{D}$ -pair results in strong and monotonic density dependence of the Ψ' and Ψ'' in-medium widths due to the increase of the final-state phase space. Within the ${}^{3}P_{0}$ model these couplings are also considered as a function of the in-medium D and \bar{D} masses and as a result the Ψ' - and Ψ'' -charmonium widths do not increase monotonically with nuclear density, but saturate at $\rho_{0} = 0.16 \text{ fm}^{-3}$. It was found that the saturation limits are $\Gamma_{\Psi' \to D\bar{D}} \simeq$ 70 MeV and $\Gamma_{\Psi'' \to D\bar{D}} \simeq 90 \text{ MeV}$, which can be compared with vacuum widths of 0.277 MeV and 23.6 MeV, respectively.

The χ_{c2} -charmonium level crosses the $D\bar{D}$ threshold at $\rho \simeq 1.25\rho_0$ and its width increases with nuclear-matter density. At $\rho \simeq 3\rho_0$ the χ_{c2} decay width into $D\bar{D}$ is about 11 MeV, which may be compared with total $\Gamma_{\chi_{c2}} = 2$ MeV width in vacuum.

We conclude that the modification of the D and \overline{D} in matter most dramatically affects the Ψ' -charmonium. This can be detected by dilepton spectroscopy as the appearance of a broad peak near the Ψ' pole or as anomalous Ψ' suppression in nuclear matter.

Our results are in agreement with the most recent findings [12] that both the mass and width of $\Psi''(3770)$ depend significantly on the *D*-meson mass.

References

- 1. T. Hatsuda, T. Kunihiro, Phys. Rep. 247, 221 (1994).
- 2. W. Weise, Nucl. Phys. A 610, 35c (1996).
- K. Tsushima *et al.*, Phys. Rev. C **59**, 2824 (1999); Nucl. Phys. A **680**, 279 (2000).
- A. Sibirtsev, K. Tsushima, A.W. Thomas, Eur. Phys. J. A 6, 351 (1999).
- P.A.M. Guichon, Phys. Lett. B 200, 235 (1988);
 K. Tsushima, K. Saito, J. Haidenbauer, A.W. Thomas, Nucl. Phys. A 630, 691 (1998).

- 6. A. Hayashigaki, Phys. Lett. B 487, 96 (2000).
- Z. Lin, M. Gyulassy, Phys. Rev. C 51, 2177 (1995);
 E.V. Shuryak, Phys. Rev. C 55, 961 (1997); A. Sibirtsev, Nucl. Phys. A 680, 274 (2000); W. Cassing,
 E.L. Bratkovskaya, A. Sibirtsev, Nucl., Phys. A 691, 753 (2001).
- A. Sibirtsev, K. Tsushima, K. Saito, A.W. Thomas, Phys. Lett. B 484, 23 (2000); Phys. Rev. C 63, 044906 (2001).
- S.J. Brodsky, G.F. Teramond, Phys. Rev. Lett. 64, 1011 (1990); F. Klingl *et al.*, Phys. Rev. Lett. 82, 3396 (1999);
 A. Hayashigaki, Prog. Theor. Phys. 101, 923 (1999).
- S. Digal, P. Petreczky, H. Satz, Phys. Lett. B **514**, 57 (2001);
 C.Y. Wong, Phys. Rev. C **65**, 034902 (2002);
 C.Y. Wong, T. Barnes, E.S. Swanson, H.W. Crater, nucl-th/0112023.
- G. Busetto, L. Oliver, Z. Phys. C 20, 247 (1983);
 R. Kokoski, N. Isgur, Phys. Rev. D 35, 907 (1987);
 E.S. Ackleh, Ted Barnes, E.S. Swanson, Phys. Rev. D 54, 6811 (1996);
 T. Barnes, F.E. Close, P.R. Page, E.S. Swanson, Phys. Rev. D 55, 4157 (1997).
- B. Friman, S.H. Lee, T. Song, Phys. Lett. B 548, 153 (2002), nucl-th/0207006; C.M. Ko, S.H. Lee, Phys. Rev. C 67, 038202 (2003), nucl-th/0208003.